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Abstract

This thesis describes the conception and development of a concurrent virtualisation soft-

ware for the e-learning platform Backstage 2. This concurrent code compile unit “co[co]
2
nut”

ties a REST-API to dynamic creation of Docker containers in order to compile and execute

user code in a secure, virtualised environment.

The conceptual software architecture is explained, and reasons for design choices, espe-

cially regarding the scheduling of concurrent requests, are given.

The implementation of the application’s main components and their interactions are de-

scribed in-depth. The API of the REST server is documented, and a brief guide on con�g-

uration and set-up of the server is given.

The performance of the software, especially in a concurrent setting, is discussed. Di�erent

factors that have an e�ect on the performance, like the use of a RAM drive, are analyzed.

Finally, there is some discussion of extensibility of the software to accommodate additional

use cases.
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Zusammenfassung

Diese Bachelorarbeit dient der Beschreibung von Konzeptualisierung und Entwicklung

einer parallelisierenden Virtualisierungssoftware für die E-Learning-Plattform Backstage

2.

Diese concurrent code compile unit “co[co]
2
nut” bildet Anfragen an eine REST-API auf

die dynamische Erzeugung von Docker-Containern ab, um User-Code in sicherer, vitu-

alisierter Umgebung zu kompilieren und auszuführen.

Bestandteile der Arbeit sind unter anderem eine Beschreibung der Software-Architektur,

insbesondere Erläuterung der Hintergründe spezi�scher Design-Entscheidungen bezüglich

des Schedulings parallel bearbeiteter Anfragen.

Außerdem enthält die Arbeit eine Beschreibung der Implementierung der Hauptkompo-

nenten der Software, sowie ihrer Interaktion miteinander, eine Dokumentation der API

des REST-Servers, und eine kurze Anleitung zur Kon�guration und Inbetriebnahme des

Server-Programms.

Die Performanz der Software, insbesondere bei paralleler Ausführung, wird diskutiert,

ebenso wie verschiedene Faktoren die auf diese Performanz Ein�uss haben, wie beispiel-

sweise die Verwendung einer RAM-Disk.

Zuletzt wird die Erweiterbarkeit der Software im Hinblick einiger weiterer Anwendungs-

fälle besprochen.
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CHAPTER 1

Introduction

In this introduction, the concept of the code compile unit software will be brie�y moti-

vated. The basic principles of how it is used will be presented. Some use cases in relation

to Backstage will be introduced as well.

This thesis contains �ve chapters. The �rst chapter is this introduction. The second chap-

ter describes the conception of the software, explaining the objectives in teaching it is

meant to help achieve, as well as some design choices that were made along the way. The

third chapter describes the implementation of the software in detail, going over third party

software that has been used, as well as the application’s main components, and �nally a

short guide on how to use the application, as well as on how to add new compilers to the

system, allowing the user to compile their code in additional languages. The fourth chap-

ter brie�y analyzes some factors that in�uence performance, especially in a concurrent

setting. The �fth and �nal chapters sketches some directions for future work that might

improve the application and extend its use cases.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Some background of how the project came to life, and a brief introduction into the established
e-learning ecosystem it will be integrated into.

Active engagement with the teaching material is a tried and tested way of learning and

understanding new concepts and oftentimes more e�ective than passively listening to a

lecture [2]. However, the degree of engagement in large class lectures can often leave

something to be desired.

Backstage 2 is an online platform for collaborative learning currently in developement

by the PMS teaching and research unit. One of the goals of this platform is to further stu-

dent engagement throughout the learning process.

The software project presented in this thesis is the Concurrent Code Compile Unit “co[co]
2
nut”

(coco2 in the following). It integrates into the Backstage platform as an interactive code

compile unit, to be used by students as well as teachers in and out of class. More informa-

tion about speci�c use cases can be found in Section 1.2.

Particularly the use case of a large number of students solving an interactive coding

exercise in class, and therefore potentially compiling their code all at the same time, poses

some di�culties in a concurrent software setting. These di�culties and how coco2 ap-

proaches them are discussed in Section 2.2.

In a teaching context, using an online compile service can have bene�ts over simply in-

stalling the compiler on one’s own system; for a very inexperienced student, the installa-

tion of compilers and runtime environments might already present a considerable hurdle.

The online service and its integration into Backstage also allow for di�erent kinds of data

to be collected and used in learning analytics.

It should be mentioned as well that a software project for this purpose has already

been developed in the context of a master thesis and has been used in teaching by PMS.

However, it has some problems regarding the implementation details of concurrency as

well as the general usability and extensibility. This version is based on Compilebox.
1

A

more thorough comparison of the two versions is given in Section ??.
This �rst version is simply called coconut and will be referred to coco1 in this thesis for the

sake of clarity.

1.2 Objective and Scope

An overview of possible use case scenarios for the software, speci�cations on what the input
and output each symbolises, and some brief notes on what the software does not do.

The software o�ers an interface for sending a compile request from a client to a server and

retrieving a result.
It should be noted that whenever we talk about ”compile request”, assume that we gen-

1

https://github.com/remoteinterview/compilebox



1.2. OBJECTIVE AND SCOPE 3

erally mean by that a request to perform any interpretation or compilation on the source

code, followed by the execution of the compiled or interpreted program. For example, for

compiled languages like Haskell, if we say ”compile request”, we actually mean ”compile-

and-then-run-request”. For languages that are not compiled, we mean ”interpret-and-run-

request”.

So, for example for the Haskell request:

main = putStrLn ”hello world!”

one would expect the result:

hello world!

1.2.1 Input and output semantics

The input is a request, consisting of source code to be compiled and run and the desired

(programming or formal) language. As many programming languages o�er or even heav-

ily encourage
2

the source code to be organised into multiple �les, coco2 also supports this.

Any command line arguments that are supposed to be parsed by the compiled program

can also be speci�ed. Information on how exactly this input should be formatted can be

found in Section 3.3.

The output is a result of the compilation and execution of the source code. It is also

encoded into the result whether or not the compilation and execution was successful or

not. In any case, the output message is divided into an output message and an error mes-
sage, representing what the compilation and execution would have written onto stdout,

respectively stderr.

1.2.2 Use cases and direction

In conjunction with the e-learning platform Backstage 2, coco2 can be used for students

and teachers to complete and review exercises in programming or pertaining to other for-

mal languages such as predicate logic or turing machine code.

Backstage 2, as of now, has two main components, one of which is Backstage courses.
Functionally, this is a web interface where slides and complementary material for lectures

are put together by lecturers, hosted online during the time of the lecture, and can then

be viewed and engaged in by the students. One example for supplementary material are

quizzes run synchronously by the lecturer, i.e. all students are expected to input their an-

swer into the system over a small time frame. Quizzes can for example be multiple choice

questions, where statistics about the rate of correct and wrong answers are collected and

can be shown and discussed during the lecture.

2

Like Java, where each class has to be put in its own �le.



4 CHAPTER 1. INTRODUCTION

An interesting application of coco2 is a Backstage quiz that is based upon a coding

exercise the students have to complete during a lecture. With coco2, (and the online code

editor Knoala that is integrated within Backstage 2) students can compile and test their

code online. Also, by supplying some unit tests with the exercise, the code submissions

could immediately be tested, and stats akin to the ones for the multiple choice quizzes, e.g.

rate of students whose submitted code passes all unit tests etc., could be generated and

shown during the lecture. This speci�c use case has implications for performance require-

ments, as discussed in Chapter 4.

Backstage’s other main component is Backstage projects, a project based platform for

the organization and scheduling of teaching materials and assignments. Students can also

host and manage their source code for group software development projects. coco2 adds

the feature to compile and execute program code directly on the platform, opening up

many possibilities: The online compile service can be used for students during their home

exercises to test out their code, providing them with useful feedback. There can be restric-

tions on assignments as well, tied to the submitted code being able to compile successfully

or pass unit tests, decreasing the teachers’ work load of reviewing the assignments.

1.2.3 Scope and limits

Even though coco2 can be used as described above, it should be noted that the software

does not provide any functionality to test or analyze the compiled source code in any way.

Any heuristics need to be applied by use of unit tests that are attached to the submitted

source code or by external software.

It further does not provide a code editor or any other user interface. Backstage 2 pro-

vides the online code editor Knoala which is based on the Ace Editor
3

and can be used

together with coco2.

3

https://ace.c9.io/



CHAPTER 2

Conception

This chapter provides some background on how the project was conceptualised. Its pre-

sumed didactical bene�ts are elaborated. Architectural considerations are given for where

the project model di�ers from its successor, coco1.

5



6 CHAPTER 2. CONCEPTION

2.1 Teaching Objectives

coconut2 provides students with an accessible, automated way of receiving pertinent feedback
for completed programming exercises.

Giving e�ective feedback. In the way that teaching of students in higher education

computer science courses is usually conducted, one step of the process is often providing

the students with feedback on some of their work. The goal of feedback is to further the

student’s understanding of the material, mainly by making them aware of possible errors

in their process.

In order to provide this feedback, the quality of the students’ work needs to be assessed.

Often, this is done by a human pro�cient in the topic of the work, such as a professor or

a tutor. For certain kinds of submitted work, it is also possible to generate feedback au-

tomatically by a computer system. This automated feedback generation comes with both

advantages and drawbacks. To fully discuss the comparison of automated feedback gen-

eration and feedback by humans would be widely out of scope for this thesis; instead, we

brie�y illustrate some of the advantages that automated feedback generation comes with

in certain circumstances.

Incorporation of feedback into the work is generally easier for the student, if the feed-

back is given immediately (i.e. a few minutes or less after the work is submitted), while the

student sill has the content of the work and its context present in their mind, and doesn’t

need to recall it from memory. In some cases, especially if the feedback is given regard-

ing the processing of a task, immediate feedback can be observed to be more e�ective for

learning. [1, p. 98]

In order for immediate feedback to be possible, a direct way of communication be-

tween student and teacher needs to be maintained. Realistically, for feedback given by

humans, this means that immediate feedback can only be obtained at certain times and in

certain settings, e.g. in a tutorial session. When the feedback is automatically generated,

it is evidently much easier to make this feedback available to the student immediately af-

ter handing in their work, as long as the feedback generation process happens reasonably

quick.

Personal feedback, i.e. feedback pertaining to the person completing the task them-

selves, is often observed to be a very ine�ective type of feedback, and personal statements

(even if they are positive) in addition to material feedback can even deteriorate the accom-

panying material feedback’s e�ectiveness. [1, p. 91]

A human giving feedback might be tempted to add a personal comment to their feedback,

even accidentally or unconsciously. For feedback that is automatically generated, it is ob-

vious that personal feedback is easy to avoid.

Compilers as educational tools. Programming exercises are prevalent in the Com-

puter Science curriculum: Obviously, they are helpful for learning a new programming

language, but even if the goal is to understand a new computational concept, doing an
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example implementation can be very bene�cial.

For such coding exercises, it is not necessary to create new software for automatic

feedback generation, because one already exists: For every conventional programming

language, parsers and compilers exist. Parsers can �nd syntactic errors, and simply com-

paring one’s expected result with the actual result of a compiled and executed program

can provide insight into possible semantic errors.

The di�culty merely lies in e�ectively using the provided tools of the programming lan-

guage: If a learner has the ability to compile their code, and is provided with unit and

integration tests that are designed to point out common mistakes, they are e�ectively able

to generate their own feedback.

This is where the collaborative online learning platform Backstage and coco2 come in.

While setting up a developing environment on one’s own system is certainly necessary

to e�ectively work on own projects. However, attaining pro�ciency with a programming

language’s sysem environment is arguably a learning goal in its own right. For absolute

beginners, it might be bene�cial to provide a web-based environment, thereby removing

this additional hurdle.

There might also be people who, for whatever reason, might not be able or willing to

install a compiler for a particular language on their own system: Shared computers, hard-

ware constraints and compatibility issues are some examples. Compilers can be a powerful

learning tool, and coco2 helps making them more accessible.

From a teaching standpoint, using Backstage and coco2 in favour of native compilers

on students’ own system also comes with advantages. By using the web based platform,

supplying unit tests is made easy. Backstage also provides the possibility to gather data

about the learners’ mistakes, which can then be incorporated into the exercises and test

cases for future iterations of the course.

2.2 Design Choices

Investigation into the behaviour of coconut v.1 (coco1) and consideration of speci�c use cases
led to the discovery of some technical challenges that arise in a concurrent setting.

The already existing coco1, while generally solving the problem at hand and providing the

same basic functionality that is described in 1.2, does not behave in the desired way under

certain circumstances.

Cleanup of the Docker Containers. coco1 creates a new Docker Container for each

compile request. This Docker Container is basically a virtual machine (the Docker termi-

nology is more thoroughly discussed in 3.1) that is persisted on the hard drive. However,

coco1 does not adequately handle the removal of these containers, leading to excessive

usage of disk space after a while. The disposal of the Docker containers is part of coco2’s
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Docker routine.

Timeout scheduling. As the compiled code cannot universally be expected to termi-

nate on its own in �nite time, it is necessary to enforce some kind of timeout scheduling.

Because the question of whether or not a program will terminate is undecidable, this means

that if the execution of the compiled code has not ended after a certain amount of time, it

has to be terminated from the outside.

However, concurrent execution of a large number of processes with �xed timeout

scheduling can lead to unjusti�ed termination. In fact, it is easy to see that the average

time t̃ it takes to compute a request in a parallelised multi-core environment is dependent

on the number of cores c, the number of requests n that are concurrently processed, and

the time takes to process a single request on a single core t, and further that t̃ increases in

relation to n.

t̃ = n · t
c

Therefore, t̃ will exceed any �xed timeout limit if there are a large number of processes

in the system at the same time. This that if the number of processes in the system is large

enough, every single process will be forcefully terminated before it can be fully executed.

Especially for use in large class lectures, scalability with regard to the number of re-

quests coming in at the same time is important, and this problem needed to be addressed.

coco2 solves this problem by restricting the number of virtualised processes that run at the

same time, and maintaining a queue for additional requests. This process is described in

more detail in Section 3.2.



CHAPTER 3

Project Realisation

This chapter outlines the technical approach of the development, going over third party

frameworks and libraries, as well as the implementation model and a quick usage reference.

9



10 CHAPTER 3. PROJECT REALISATION

3.1 Third Party Software Used

Some third party frameworks and libraries were used in development. It is discussed how and
why they were used. Speci�c terminology that might be unfamiliar to the reader is explained.

3.1.1 Docker

Docker basics. Docker is an open-source software for virtualising applications in iso-

lated units, called containers. Docker provided means for maintaining images, in that way,

con�gurations for running such containers can be reused. Many base con�gurations that

come with runtime-environments and compilers for di�erent languages can be found in

the o�cial Docker repositories.
1

Docker containers can be used to run applications inside virtualised environments,

thereby ensuring security of the host system. For an online compile service, this security

is crucial, as compilation and execution of user code in turing-complete, �le-IO-pro�cient

languages pose a risk to the integrity of the system.

Compared to conventional virtual machines, Docker containers are relatively lightweight;

they do not introduce a full operating system to the machine but instead run directly on

the Linux kernel, while still providing security by strictly separating kernel name spaces

and network stacks.
2

A Docker container can be started from the terminal via the run command, for exam-

ple:

1 $ docker run ubuntu echo "hello world"

In order to further customise the images, one can create a Docker�le, where a host

mount volume, a working directory, and multiple commands to be executed can be speci-

�ed. Usually, speci�cations for new Docker images will use existing images as a baseline:

1 /* Dockerfile.txt */
2 # base your image on ubuntu
3 FROM ubuntu
4 # install additional packages
5 RUN apt-get install curl
6 # run an application
7 CMD curl "http://haskell.org/hoogle"

From this Docker�le, a new Docker image can be crated, using the build-command,

and then run:

1 $ docker build -f files/Dockerfile.txt -t fancy_new_image
2 $ docker run fancy_new_image

It is possible to mount a directory of the host �le system to a directory of the Docker

container’s �le system, making the contents of the directory accessible to the Docker con-

1

https://hub.docker.com

2

https://docs.docker.com/engine/security/security/
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tainer, and persisting any artifacts created by the Docker container inside this directory,

even after the container stops.

1 $ docker run -v /files/mountpoint fancy_new_image

For further reference, see the Docker documentation.
3

Docker Client and Docker Daemon The Docker Client is the process that allows the

user to input commands (such as docker run). These commands are then translated

into http API calls by the Docker Client, and relayed to the Docker Daemon, which handles

communication with the host operating systems and creation of mounted directories.

Integration into the project. coconut2 uses a designated Docker image for each sup-

ported language. Preferably, Docker images from the o�cial Docker repositories were

chosen, as those are likely to be kept up-to-date by the Docker team.

Language
Docker image

scala

Compilation step
Docker container

scalac Code.scala

Execution step
Docker container
scala Code

Language
Docker image
nodejs

Interpretation
Docker container
node code.js

Figure 3.1: Relation between compile requests, docker containers, docker images. A docker con-

tainer of a certain colour represents an instance of the docker image of the same colour. Dotted

rectangles represent one compile request.

It would be natural to simply run a Docker container for each compile request, based

on the image of the language the user wants to compile their code in. However, due to

complications with the Docker Scala API, it was not possible to relay multiple commands

to be executed in one container without creating a designated Docker �le, i.e. building

a designated Docker image. As building a Docker image is a relatively time consuming

process, this idea was discarded.

Instead, each command is executed in its own Docker container. Data is exchanged

between these containers by mounting them to a place in the host �le system. This is also

where the user code is transferred into the container.

This abstraction could also enable sequencing of processing steps that do not depend on

3

https://docs.docker.com/



12 CHAPTER 3. PROJECT REALISATION

the same Docker image, i.e. that are executed in di�erent run time environments, which

might be a direction for future work.

3.1.2 MongoDB

MongoDB is an open source database program that uses JSON-like documents with schemas,

meaning it is a NoSQL or non-relational database. For reference, see the MongoDB docu-

mentation.
4

Compile responses are stored inside a MongoDB database together with their request data

and metadata. Because this request and user data can later be used in learning analytics,

it is stored persistently.

MongoDB in particular was chosen because it ensures that most recently updated items

are kept in working memory, so that it can also be used to e�ectively fetch the result to a

certain user’s requested computation shortly after this computation was completed.

3.2 Implementation

An overview over coconut2’s implementation model and its main components, their function-
ality and the way they interact with each other.

A compile request enters the system via the Server’s REST API. The actual compilation and

execution of the user code is virtualised by use of Docker containers. The DockerBeetles
together with their DockerBeetleKeeper serve as intermediary agents between the REST

API and the creation and running of these containers.

DockerBeetles are independent and stateless objects that handle the creation and destruc-

tion of Docker containers. One DockerBeetle represents one compilation request. After

a Beetle is done with its work, it writes its result into the CocoLog, associated with some

meta data.

The DockerBeetleKeeper is the central control unit for the DockerBeetles. It maintains a

queue of request from which the Beetles are generated and synchronises access to critical

system variables.

A simpli�ed illustration of the system architecture can be viewed in Figure 3.2.

Server

DockerBeetleKeeper

�eue

CocoLog

B

B
...

Docker-
Beetles

Figure 3.2: An overview of the software’s main components.

4

https://docs.mongodb.com/



3.2. IMPLEMENTATION 13

An incoming compile request, as discussed in Section 1.2, consists of the serialised

source code �les (one of them marked as the ”main” �le, or entry point to the program),

as well as the programming or formal language the code is to be interpreted as. This in-

formation is the request data. The Server also collects some request meta data information

that is mostly pertinent to the Backstage-speci�c context from which the compile request

originates. Together, request data and request meta data make up a CocoRequest object.

3.2.1 DockerBeetleKeeper

The DockerBeetleKeeper is a case object. Its main jobs are to maintain the compile request

queue and to ensure that no more than the allowed number of beetles are running at

the same time. This maximum number of concurrently alive beetles is derived from the

number of CPU threads (the need for this restriction is discussed in Section ??).

1 def request(req: CocoRequest, time_stamp: Long): String = synchronized {
2 val id = DockerBeetleID(
3 time_stamp,
4 Fun.unique_number
5 )
6 if (beetles_running >= MAX_ALIVE_BEETLES) {
7 request_queue.enqueue((req, id))
8 } else {
9 beetles_running = beetles_running+1

10 compile(req, id)
11 }
12 id.toString
13 }

Code Block 3.3: DockerBeetleKeeper’s method that handles incoming requests.

Synchronising the queue. Once a new CocoRequest enters the system, it is relayed

to the DockerBeetleKeeper’s method request (see Code Block 3.4), which pairs it with

a DockerBeetleID. This ID’s use is twofold: It serves as a unique identi�cation number and

encodes a time stamp of when the request was origninally received. From there, this pair is

either enqueued into the request queue, or, if there are less beetles currently running than

allowed, the compile method is instead called right away, where a new DockerBeetle is

created and compilation is started.

The requestmethod is synchronised (simply by wrapping it in Scala’s this.synchronized.

This is because by accessing the semaphoric beetles_running variable (l. 6-9 in Fig.

3.4), the method body quali�es as a critical section.

Handling a compile request. In the compilemethod, an attempt is made to turn the

request data into a DockerBeetle. This transformation will fail if the speci�ed language is

not known to the system. (Information about how new languages are added can be found

in Section 3.3.) The result of the compile method is a RunResult wrapped inside a scala

Future,
5

enabling the concurrent computation of multiple compile requests.

5

https://docs.scala-lang.org/overviews/core/futures.html
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1 def compile(req: CocoRequest, id: DockerBeetleID): Future[RunResult] =
2 req.data match {
3 case CocoRequestData(mainfilename, files, arg, language) =>
4 cocolibrary(language) match {
5 case Some(cocoLanguage) =>
6 DockerBeetle(mainfilename, files, arg,
7 cocoLanguage, id, req.meta)()
8 case None =>
9 Future(RunFailure("", "sorry I do not speak " +

10 language, req.meta, System.currentTimeMillis(),
11 System.currentTimeMillis()))
12 }
13 }

Code Block 3.4: DockerBeetleKeeper’s method that creates new DockerBeetles.

3.2.2 DockerBeetles

A DockerBeetle object is the represents one compile request in the system. The Docker-

Beetle controls creation and termination of the Docker containers where the user code

compilation and execution takes place: This includes setting up the containers’ working

environment (i.e. creating and deleting the mount directory on the host system). It also

passes compilation and execution results to the CocoLog, once execution is completed.

When all of this is �nished, it alerts the DockerBeetleKeeper to dequeue the next waiting

request, thereby ensuring livelihood of the system.

1 case class DockerBeetle(
2 mainfile: String,
3 files: List[CocoFile],
4 arg: String,
5 language: CocoLanguage,
6 id: DockerBeetleID,
7 metaData: CocoRequestMeta,
8 HOSTWORKDIR: String = Main.config.dockerplayground
9 ) { /* ... */ }

Code Block 3.5: DockerBeetle’s constructor.

Creation of new DockerBeetles. A DockerBeetle is created with all of the data that

makes up a CocoRequest (�les, language, arguments, meta data) as well as the generated

ID and the working directory its docker containers will be mounted to (see Code Block 3.5).

When it is created in the DockerBeetleKeeper’s compile method (l. 6-7, Code Block 3.3),

its apply method is immediately called as well. This method represents the complete

DockerBeetle life-cycle, based on chained-together scala Futures. The DockerBeetle is

therefore functionally stateless, meaning that it has no mutable state that is visible from

the outside.

Life-cycle of the DockerBeetle. The applymethod (Code Block 3.6) mainly consists

of the aforementioned strung together Future wrapped computations. The basic procedure
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consists of creating the mount directory, writing all of the input source �les to this direc-

tory, creating and running the docker containers, and �nally deleting the mount directory

recursively, logging the result and informing the DockerBeetleKeeper that the next wait-

ing request can be dequeued and “beetled”.

The methods create_mount, write_file and delete_recursively called in

ln.2, ln.4 and ln.10 respectively are merely �le-IO handling methods that are based on

java.io.

The run method (called in ln.7) handles the sequenced creation and destruction of the

1 def apply(): Future[RunResult] = {
2 create_mount()
3 flatMap { _ =>
4 val file_writings = files.map(x => write_file(HOSTWORKDIR + UNIQUENAME, x))
5 Future.sequence(file_writings)
6 } flatMap { _ =>
7 run_list(docker_commands)
8 } andThen {
9 case _ =>

10 deleteRecursively(work_dir)
11 } andThen {
12 case Success(runres) =>
13 log_and_dequeue_next(runres)
14 case Failure(e: TimeoutException) =>
15 log_and_dequeue_next(RunFailure("", s"Timeout after

${Main.config.timeout} seconds.", metaData, id.birthday,
System.currentTimeMillis()))

16 case Failure(e: Exception) =>
17 log_and_dequeue_next(RunFailure("", s"There was an exception other than

a timeout: ${e.getMessage}.", metaData, id.birthday,
System.currentTimeMillis()))

18 }
19 }

Code Block 3.6: DockerBeetle’s apply method.

appropriate docker containers and will be described in detail a bit further down.

The method log_and_dequeue_next (called in lns.13, 15, 17) calls a synchronised

procedure in the DockerBeetleKeeper, making sure that access to thebeetles_running
variable and the writing to the log are synchronised.

Building and running the Docker Containers. DockerBeetle’s run_list and run
methods handle the synchronised execution of the relevant shell commands that create

(and afterwards, dispose of) the docker containers for each compilation step. Every com-

pilation step is executed inside its own Docker container.

These Docker containers are created with respect to a mount directory, an image and a

1 s"docker run --name $UNIQUENAME$i -w /app -v $work_dir_path:/app $image $comm"

Code Block 3.7: Interpolated String that assembles Docker shell commands.

command. The mount directory is the directory on the host where source code �les and

compiled �les are stored between container runs. The image corresponds to the selected
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language the code is to be compiled in. The command is the command that is executed in-

side the Docker container, and these are for example commands that run the compiler for

the desired language, (like ghc --make filename.hs) or execute the compiled user

program (like ./filename or java filename.java). They also receive a name that

is composed of the unique name that is given to this particular DockerBeetle, correspond-

ing to the request, and a number that indicates what step of the compilation sequence it

represents.

1 // run a single command. retrieve a run result in a future
2 def run(command: String, number: Int): Future[RunResult] = {
3

4 // logging the results from stdout and stderr
5 var err: ArrayBuffer[String] = ArrayBuffer.empty[String]
6 var ok: ArrayBuffer[String] = ArrayBuffer.empty[String]
7 val logger: ProcessLogger = ProcessLogger(str => {ok += str}, str => {err +=

str})
8

9 val process = command.run(logger) // start asynchronously
10 val q = Future(Await.result(Future(process.exitValue()), Main.config.timeout))
11 q.map {
12 // encodes success or failure depending on process exit code
13 case 0 => RunSuccess(ok.mkString("\n"), err.mkString("\n"), metaData,

id.birthday, System.currentTimeMillis())
14 case _ => RunFailure(ok.mkString("\n"), err.mkString("\n"), metaData,

id.birthday, System.currentTimeMillis())
15 } andThen {
16 case Success(foo) =>
17 // remove the finished container
18 s"docker rm $UNIQUENAME$number".!
19 case Failure(e: TimeoutException) =>
20 // stop running container, then remove it
21 val r = s"docker stop -t 0 $UNIQUENAME$number".run()
22 Future(r.exitValue()) onComplete { _ =>
23 s"docker rm $UNIQUENAME$number".run()
24 }
25 }
26 }

Code Block 3.8: DockerBeetle’s run method.

Temporal synchronization. To synchronise the execution of the compilation steps,

(i.e. making sure the compilation of the source code happens before the execution) the

run_list method applies a recursion based approach of stringing together scala Fu-

tures. It ensures that the compilation steps occur in the correct order, and that each step

is only performed if the preceeding step was successful (e.g. no attempt will be made to

execute a compiled program if the compilation has not been successfully completed).

The run method (shown in Code Block 3.8) represents the creation and disposing of of a

single Docker container.

Its parameters, a String and a number, represent a speci�c Docker command and its index

in the sequence of compilation steps (e.g. the command for compiling the source code

might have the index 0, then the execution of the compiled program would have the index

1).

These indices are relevant in order to distinguish the two or more docker containers that
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are created in the process: Distinguishing these containers allows for a new container to

be created before the last one has been completely disposed of, enabling more e�cient

parallelization.

The scala.sys.process package includes an implicit conversion from String to the

trait ProcessBuilder, giving it a run method, (called in Code Clock 3.8 ln. 9) which

then creates a new process by interpreting the string as a Linux shell command, and exe-

cuting it concurrently.

Data synchronization. The subsequent creation of multiple Docker containers per-

taining to a single request also necessitates the synchronization of access to and persis-

tence of some data. This is achieved by creating a directory on the host system which

each of the subsequent containers are mounted to. After the �nal container terminates,

this directory is removed from the host. (See the IO-related method calls in Code Block

3.6.)

Timeout scheduling. Each compilation and execution step of the user’s code has to

be terminated after a �xed amount of time, because there is no guarantee that a given user

program will terminate on its own in a �nite time interval. The system uses a con�gurable

central timeout value for each of the steps, meaning that each step of the compilation and

execution process is granted a �xed amount of time to reach termination on its own. After

this interval, the compilation or execution step is interrupted and the subsequent steps are

not performed.

This timeout scheduling is handled by the DockerBeetles. In Code Block 3.8 ln.10, the

result of the computation of the process exit value wrapped in a Future is awaited, and

wrapped in another Future; thereby executing its computation asynchronously, but with

a �xed time limit.

1 case class RunSuccess(std_out: String, std_err: String, meta: CocoRequestMeta,
2 start_time: Long, end_time: Long) extends RunResult
3 case class RunFailure(std_out: String, std_err: String, meta: CocoRequestMeta,
4 start_time: Long, end_time: Long) extends RunResult

Code Block 3.9: RunResult’s constructors

Logging and returning results. The output that is written to stdout and stderr
inside each of the Docker containers is assumed to be the request’s result. As of now, it is

not possible to retrieve any additional �les that were created by the user’s compiled pro-

gram. (See 5.2 for a discussion of this direction for future work.)

This is done by passing a ProcessLogger object to the called run method of the Pro-
cessBuilder assumed string command. This logger simply appends anything piped to

stdout and stderr respectively to a String variable (Code Block 3.8 lns. 5-7). After the

Docker container terminates, the RunResult object is assembled (lns. 13-14). This can

either be a RunSuccess or a RunFailure, depending on the exit code of the process

run inside the Docker container. Both the error and the regular output channels are re-

layed (this might be useful in case there are some errors in an otherwise successful process,
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like compiler warnings). The meta data and time stamp that have been collected from the

request are also stored in this result object.

At this point the result also receives a new time stamp, signifying the time at which the re-

quest’s processing has been �nished. Thereby a RunResult object consists of the String

piped by the process to stdout, the String piped by the process to stderr, meta data,

a starting time stamp, and an ending time stamp (see Code Block 3.9).

The returned result is also added to the CocoLog, together with the request data and meta

data.

3.2.3 Server

The coco2-server uses a REST-API in order to handle incoming compile requests. Requests

are sent via a POST-request, to which a response that consists of a single string of charac-

ters is given immediately. This string of characters is called the id of the request (not to be

confused with the internal DockerBeetleID). The result can be retrieved by a parametrised

GET-request after compilation is done. This functionality all lies on the server’s compile-

route. (Figure 3.10.)

REST
API

id: ”1513802834088-1001”

main = print ”hello”

hello

POST-request

GET-request

GET-response

POST-response

Figure 3.10: Illustration of how the REST API is used to send compile requests and retrieve the

corresponding result, using an ID system.

The server is based on akka-http.
6

Apart from the aforementioned compile route, it

provides a route called explain, where a documentation page can be viewed. Further, the

server handles JSON-conversions and deals with the authentication.

Authentication and meta data collection. As of now, the authentication is directly

tied to the meta data that is collected by the software and depends on the speci�c authen-

tication system that Backstage 2 uses.
7

Modularising the authentication and meta data

collection might be a goal for the future when another authentication system is meant to

be used, or when there is di�erent meta data to be collected.

Both for sending in requests and for retrieving results via the compile route, a valid au-

thentication is needed. The explain route only has GET functionality and works without

authentication.

The CocoServer decodes the authentication token using a JSON web token signing al-

gorithm.

6

https://doc.akka.io/docs/akka-http/current/

7

https://www.keycloak.org/index.html
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Relaying incoming requests to the DockerBeetle. When a POST request to the

compile route comes in, it immediately receives a time stamp by the server, in order to

measure it’s time spent in the system. Afterwards it is relayed to the DockerBeetleKeeper

for further processing.

Returning results to the user. For GET requests to the compile route, the server

�rstly checks if the id parameter has a valid form. If it does not, it responds with an error

message. If the id is valid, it is looked up in the CocoLog. If a result has been logged

under this id, it is returned to the user as a response. If no result has been logged for this

particular id, a message informs the user how many requests are currently queued, and

prompts them to try again shortly.

Cancelling requests. The user can also send a DELETE request parametrised with an

id in order to cancel a previously sent request. If there is a request with this id currently

queued, it is removed from the queue and will not be ful�lled. There is no way to cancel a

request for which the compilation process has already started. The needed functionalities

for interrupting a working DockerBeetle from the outside would be anti-idiomatic to its

stateless and self contained nature and this architectural argument outweighs the bene�t

of saving a (rather small since bounded by a timeout value) amount of computation time.
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3.3 Usage

A short guide on how to use the software, both for the server and the client side.

3.3.1 Setting up the server

Creating a con�guration�le. Undersrc/main/resources/application.conf,

place a con�guration �le with the following keys. See Figure 3.11 for an Example.

dockerplayground Path to the parent directory of the Docker container mount-

ing directories. It is important that the Docker Daemon has

writing permissions for this location.

secret The shared secret key used by the JSON web token signing

algorithm that is used to decode the authentication tokens.

timeout This value determines the amount of time after which a run-

ning Docker container gets terminated. Scala’s duration syn-

tax can be used here.

serverport The port on which the REST server listens on.

resourcesdirectory Path where the custom language compilers are stored. (See

Section 3.4 for further information.)

hyperthread This value should be equal to the number of physical CPU

cores the application has access to. This �eld can be omitted,

in which case the Java Runtime estimates the number of avail-

able processors, however this will most likely lead to subopti-

mal performance on machines that support multi threading.

When the application is started via a compiled .jar �le (usually created with sbt assem-
bly) and not from the sbt console, it is important to call sbt clean after each change

to the con�guration �le.

1 dockerplayground="/user/local/home/vdbrausegrund/dockerplayground/"
2 secret="arwZa3o7Y43Dz5e148nk"
3 timeout=20 seconds
4 serverport=8008
5 resourcesdirectory="/home/vdbrausegrund/customlangs/"
6 hyperthread=8

Figure 3.11: An example con�guration �le.

Starting the application. Running the application with sbt run or a similar com-

mand will automatically start a REST server listening on the port speci�ed in the con-

�guration �le. When starting the application, any number of the following �ags can be

provided to modify the application’s behaviour.



3.3. USAGE 21

-INIT Initialization: Pulls all remote Docker images, builds all local Docker images.

This �ag should be set if the Docker images have been wiped recently.

-DEBUG Debug Mode: Authentication is no longer validated, however, there still needs

to be an authentication header present, it will simply be regarded as valid, no

matter its content.

-DIE Software can be shutdown from terminal. Useful for testing.

3.3.2 Sending in requests and retrieving results using the REST-API

The server uses a REST API to process requests. This section explains the format of the

expected requests and the given responses.

1 {"mainfilename":"main.hs",
2 "files": [{"name":"main.hs",
3 "content":"main = print 07734"},
4 {"name":"notmain.hs",
5 "content":"main = print 80085"}],
6 "arg":"a string with arguments",
7 "language":"haskell"}

Figure 3.12: An example payload for a compile request.

Request format In order to request some user code to be compiled, a POST request

should be sent to the server’s compile route. The payload needs to be a JSON object with

the following keys. (See Figure 3.12 for an example.)

mainfilename String Name of the main �le, or entry point �le.

files [Object] An Array of JSON objects that represent �les, formatted as

follows:

name String The name of the user code �le

content String The content of the user code �le

arg String The argument that should be supplied to the user program

when it is executed. If no arguments are desired, this key

still needs to be present. Its associated value should be the

empty string.

language String The language in which the user code should be compiled or

interpreted.

Besides the described payload, and a header declaring the content type, it is required

that a valid authentication header is present. This header should be of the form:

1 Authorization: Bearer <Authentication String>
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A list of the available languages is displayed as part the documentation page of the

server. Any of the aliases that are listed there for a given language can be used as the

language key of a request.

Response and result format The immediate response to a POST compile request will

contain a JSON object with only two keys: id and status. (With the latter being either

“running” or “queued”.)

If a GET request is sent to the compile route, with this ID as a route parameter, the response

will again be a JSON object. If the associated compilation has not yet been completed, it

will contain the same two keys as the response to the POST request: id and status.

If the compilation has been completed, the state will be “�nished”, and the JSON re-

sponse object will additionally contain a key result, which in turn contains the follow-

ing keys:

success Boolean Whether or not the compilation was deemed successful. If

either compilation or execution of the code yields an exit

code that is not 0, this value is false, otherwise true.

stdout String The output of all compilation and execution steps that were

piped to stdout, concatenated together into one string.

stderr String The error and warning messages of all compilation and exe-

cution steps that were piped to stderr, concatenated together

into one string.

start Integer Time at which the request entered the system, in the epoch

format.
8

end Integer Finishing time of the last compilation or execution step, in

the epoch format.

8

https://www.unixtimestamp.com/index.php.
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3.4 Adding new languages

The presented software is a framework that is meant to be extended in di�erent ways.

One way of extending the framework that was speci�cally planned for when designing

the application is the process of adding new languages that user code can be compiled in.

Other kinds of extension might require more work, and can be read about in Chapter 5.

New languages can be added to the system by extending the CocoLinguist object. This

object maintains the languages known to the system, represented by lists of CocoLan-
gauge objects. By adding new elements to these lists, new languages are added to the

system.

1 case class CocoLanguage(image: String,
2 aliases: List[String],
3 command_builders: List[CocoRequestData =>

Command])

Figure 3.13: Representation of languages.

The CocoLinguist object maintains two lists of CocoLanguages, one for such

languages where the Docker image is pulled from the remote Docker image repository

(called pre-built-languages) and one for languages where the con�guration for

the Docker image, as well as the compiler, is stored on the local machine (this list is called

custom languages).

In order to add a pre-built language, it is enough to create a corresponding CocoLan-
guage object. To add a language that is virtualized in a custom Docker image, you also

need to add a Docker�le (and any compilers and runtime environments you want to use)

to the custom_languages directory inside the resources directory speci�ed in the ap-

plication’s con�guration �le.

1 CocoLanguage(
2 image = "haskell",
3 aliases = List("hs"),
4 (data: CocoRequestData) => IndependentCommand(s"ghc --make

${data.mainfilename}"),
5 (data: CocoRequestData) =>

FileDependentCommand(s"./${data.mainfilename.stripSuffix(".hs")}
${data.arg}", data.mainfilename.stripSuffix(".hs")))

6 )

Figure 3.14: Example CocoLanguage object for the language Haskell.

A CocoLanguage object is built by supplying the name of the image (in case of a

pre-built language that is to be pulled from a remote repository, this name needs to be

equal to the image name that is used in the remote repository, so that Docker can �nd it),

any number of aliases you want to add (so that the language doesn’t always have to be

referenced by the remote image name, in case that name is undesired for some reason),

and a list of command builders.
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A command builder is a function that takes all of the request data as an input, and

yields a Command object. A Command object can either be an IndependentCommand
or a FileDependantCommand: Independent commands are always executed, �le de-

pendent commands are only executed if a certain �le exists. This is a useful distinction,

because there are instances in which certain steps of the compilation and execution pro-

cess are dependent not only on the success of the preceding step, but on a speci�c artifact

being created by the preceding step.

Consider as an example the CocoLanguage object that represents the Haskell language.

(Code Block 3.14). The �rst command builder represents the compilation command. This

is an independent command because at least one source code �le must be present in any

valid CocoRequest, meaning that there is always something to compile. The second

command builder represents execution of the compiled code, which yields a �le depen-

dent command: There might be valid, compilable code, that does not yield any executable

�les (e.g. example any Haskell program that does not contain a main function).



CHAPTER 4

Performance Analysis

For a single request, coco1 and coco2 yield compilation and execution results in approx-

imately the same time. coco2 produces slightly more overhead due to the need for two

HTTP requests instead of one, and the use of a designated Docker container for each step.

However, coco1 processes compile requests sequentially instead of in parallel, leading to

poor scalability of the application, which makes it unsuitable for use in large class lectures.

coco2 parallelises the processing of its requests, meaning that its performance can always

be improved by allowing it to run on more CPU cores, as long as the bottleneck of writing

data to the hard drive that emerges from the frequent creation and destruction of Docker

containers is avoided by using a virtual RAM drive.

25
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4.1 Performance Improvements with a RAM drive

Instructing Docker to write its images and containers into RAM instead of virtual memory
can increase performance drastically by softening the I/O bound.

Language: Haskell (compiled and executed, two steps)

User Code Input: main = print 11

# of requests at the same timecontainers

in RAM

mounts

in RAM 16 32 64 128

7 7 13 34 66 125

7 3 13 32 66 124

3 7 7 15 27 53

3 3 7 14 26 53

Language: node.js (interpreted, one step)

user code input: console.log(11);

# of requests at the same timecontainers

in RAM

mounts

in RAM 16 32 64 128

7 7 10 15 31 62

7 3 10 15 31 62

3 7 2 5 9 19

3 3 2 5 9 19

Figure 4.1: Average time spent in the system for user code compilation requests, in seconds, de-

pending on whether or not the Docker Container itself or its host mount volume were mounted

on a RAM drive.

When a Docker container is started, the software that is needed to run it (its operating

system, system tools, libraries, and settings, as well as any runtime environments or com-

pilers needed for user code compilation) is persisted to a designated place in the �le system

of the host system. Each individual docker container that is set up therefore necessitates

a signi�cant number write operations to the hard disk. This is evidently a bottle neck of

the application, because disk operations cannot be parallelised, and leads to a classic I/O

bound of the applications performance.
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This problem can be mitigated by using a RAM drive as the location where the Docker

containers are stored. The volatility of such a RAM drive does not pose a problem, because

the Docker containers are only needed for the time it takes to complete a single request.

Using a RAM drive for the container’s storage location did, in fact, yield a performance

increase of about a factor of 2 − 3 (see Figure 4.1). Placing the host mount volume of the

Docker containers (recall, that is where the user code is transmitted into the containers’

�le system) on the RAM drive was also tested and did not yield a signi�cant improvement,

probably due to very small �le sizes.

These tests were performed on a machine with two CPU cores and 4 GB of RAM, using a

RAM drive 2 GB in size. With more CPU cores, higher parallelisation could be achieved,

and an even bigger performance increase would be expected.

4.2 Performance Dependency on Frequency of Incoming Re-
quests

Data shows that even a short delay between incoming requests results in a signi�cantly re-
duced average waiting time for each request, compared to requests coming in in bulk at the
exact same time.

0 10 20 30 40 50

No Delay

500 ms

1000 ms

seconds spent in the system

Language: Haskell (compiled and executed, two steps)

User Code Input: main = print 11

Figure 4.2: A box plot of the time that was spent in the system by 64 requests that were sent in

with varying intermittent delays.

The data acquired in 4.1 is based on di�erent numbers of multiple requests entering the

system at the exact same time. However, in a realistic setting, even for a large number of

users, especially in the teaching context, one would expect at least some delay between

the incoming requests. Even for a large number of students solving the same exercise in
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the same time frame, the exact times at which they would submit their solutions would be

di�erent.

As can be seen in Figure 4.2, even a short delay between incoming requests lowers

each request’s time spent in the system signi�cantly. Speci�cally, a delay as little as 500
ms decreased the median time spent in the system by nearly a full second.



CHAPTER 5

Conclusion and Future Work

coconut2 allows for concurrent user code compilation, and its scalability makes it suitable

for use in large class lectures.

This chapter discusses directions for future work, including some additional features that

could be useful in learning, and the possible challenges that might arise during the devel-

opment of these features.

29
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5.1 Ways to Further Optimise Performance

Use of pre-compiled artifacts. Especially in the context of teaching, code compila-

tion could encompass redundant tasks. Programming exercises may be supplied with unit

tests, these unit tests do not change between students, and therefore do not need to be

recompiled for every student attempting to solve the exercise.

There are many languages where this approach would be fathomable, in Java, for instance,

compiled .class �les of the same name are interchangeable.

This would necessitate the possibility of a di�erentiation between main user code �les,

and precombiled �les provided by A meaningful abstraction for this would need to be

conceptualized, and implemented. This would also most likely entail changes to the REST
API.

Non-virtualised execution. Especially in the context of formal and didactical lan-

guages, there are some programs that do not necessarily need to be virtualised for security.

For example, the virtual Turing Machine language does not contain any functionality for

writing to the �lesystem or interfering with the system at all. The potential “danger” of

non-terminating programs can be mitigated by terminating the created process after the

given timeout threshold, a system which is already implemented.

Therefore, for these languages, one could conceptualise a NonDockerBeetle, similar to

the DockerBeetle, that directly executes the compilation and execution commands on

the machine itself, without using Docker as an intermediary at all. One possible challenge

to this approach is the correct set-up of the working directory, as this is currently mostly

handled by Docker. This could lead to better performance.

5.2 Adding new features

Exploring other possible use cases of coconut2 that could be covered by changing the software
and adding new features.

Rich output. Currently, coco2 only supports strings of text as an output format. While

code that creates additional output, such a rendered image �le, can be compiled and exe-

cuted, there is currently no way to transmit these �les back to the user.

It would be possible to persist any created �les on the host system simply by omitting the

deletion step. As the directories created by a speci�c compilation request is already tied

to that request by its identi�er, retrieval would also be possible without much change to

the software. However, transmitting �les other than text with the response would neces-

sitate rather big changes to the API. Also, the issue of data storage limit would need to be

addressed.

Interactive REPL Many programming languages don’t only support compiling a full

executable program, but also o�er an interactive REPL (Read–Eval–Print Loop). This is

very useful for testing small scripts, and can especially aid in getting �rst grasp of the

syntax and basic functionalities of a newly learned language. Evidently, REPLs are useful

tools for learning and teaching.



5.2. ADDING NEW FEATURES 31

For the extension of coco2 to support an interactive REPL, two approaches seem feasible.

One possible approach, that would require the least change to the software, would be to

create an entire new REPL session on the server, for every new user input. This way, no

interactive connection between the client and the server would be necessary. However,

this would make supporting the evaluation of any time-dependent expressions very di�-

cult.

Another approach would be to maintain a connection between the client and the server,

and sending the user’s input to the same interactive REPL session, until the user decided

to exit the REPL. This could be achieved, for example, by using web sockets. However, this

would necessitate larger changes to the existing software, speci�cally the API.
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